IPC Class 2 VS Class 3: The Different Design Rules

0
959

As a circuit board manufacturer, designers often ask us about the difference between IPC Class 2 and Class 3. Class 1 does exist although we rarely produce boards that fall into this classification. Most of the times, even if the end-use of the product only requires Class 1. We will make it Class 2 just to ensure a better performance. This article will help you understand the different design rules for IPC Class 2 and Class 3 circuit boards.

There are four IPC classifications. Class 1 is assigned to general electric boards with a limited life and a “simple” function, such as the ones you can find in remote controls. Class 2 is for dedicated service electronic products. This means that you expect the board to have an extended life so you can place it in a television, a computer, or an air conditioner. Class 3 PCBs are tighter in tolerances as opposed to Class 1 and Class 2 boards. John Perry, Director of Printed Board Standards and Technology at IPC, explained:

“Class 3 includes products where continued high performance or performance-on-demand is critical, product downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the product must function when required.”

These circuit boards are highly reliable. They are used to achieve high performances in the military or in medical, for instance. IPC-6012DS Class 3A includes space and military avionics. It is the highest class for printed circuit boards.

The differences between Class 2 and Class 3 for assembly

Umut Tosun, Application Technology Manager at Zestron America, explained, “The major differences between Class 2 and Class 3 are found in component placement for surface-mount components, cleanliness requirements based on residual contaminants on the assemblies, plating thicknesses as defined in plating through-hole and on the surface of PCBs.”

During assembly, surface-mount components might be slightly placed off pad. This is what we call a visual defect since it does not usually affect the electrical and mechanical performance. It, therefore, does not matter for Class 2 circuit boards. However, Class 3 does not accept any imperfection and this type of assembly misstep will cause the circuit board to fail the inspection.

The amount of barrel fill required for through-hole leads is 50% for Class 2 and 75% for Class 3. As it can be delicate to get the paste into small plated through-holes (PTH), Sierra’s advice is to design your PTH 15 mils over the diameter of the lead. This way, you will have 7.5 mils on each side, which will make it easier for the paste to fill the barrel.

ipc class 2 and class 3 barrel fill

The differences between Class 2 and Class 3 for PCB manufacturing

Annular ring and drill breakout

Another topic Class 2 and Class 3 differ on is drill breakouts. Class 2 allows breakouts from the annular ring whereas Class 3 does not accept any lifted or fractured annular rings. Class 3 boards need to be highly reliable and when there is a breakout, it is too difficult to find out how much is really broken out and how much it really affects the connection with the pad. For Class 2, 90 degrees breakout of the hole from land is allowed provided minimum lateral spacing is maintained.

ipc class 2 annular ring breakout

The conductor junction cannot be reduced more than 20% of the minimum conductor width specified on the engineering drawing. The conductor junction should never be less than 2 mils or the minimum line width, whichever is smaller. For Class 3, the minimum internal annular ring cannot be less than 1 mil. The external annular ring cannot be less than 2 mils. It is measured from the inside of the PTH barrel to the edge of the land pad and may have 20% reduction of the minimum annular ring in isolated areas due to defects, like pits, nicks, pinholes, or dents.

ipc class 2 and class 3 annular ring

There will be a difference between the designed annular ring and the manufactured / actual annular ring. This is due to shifting in materials during the circuit board manufacturing process. To meet the Class 3 requirements, Sierra uses Pluritec machines to discover the shift in material, software to re-scale the drill locations, and vision drilling to accurately place the drills.

Design rules for annular rings

To achieve acceptance for Class 2 and Class 3, follow the tables below published by Altium. The first one gives the annular ring requirements for mechanically drilled blind, buried, and through holes on ½ oz copper:

Altium annular ring requirements table

And this table is for various copper thicknesses:

Altium ipc class 2 and class 3 copper thickness

PCB dielectric requirement

The minimum dielectric for Class 2 and Class 3 is 3.5 mils.

ipc class 2 and class 3 dielectric thickness

PCB through-hole plating requirement

Class 3 requirements are as well more astringent for voids in copper. On Circuitnet, Paul Reid, Program Coordinator at PWB Interconnect Solutions, said, “A copper void is where the copper plating in the barrel of the hole is missing exposing the dielectric material of the drilled hole. Class 2 allows one void in 5% of the holes. Class 3 and 3/A allows no voids.” The plating thickness requirement for Class 2 is 0.8 mil as opposed to 1 mil for Class 3.

These are just a few requirements that differ between Class 2 and Class 3. As usual, the best advice we can give you is to communicate with your PCB manufacturer. They will guide you and help you get it right the first time. You should also request a cross-section of your board to make sure that your shop met your Class 2 or Class 3 requirements.

source: Serial Circuit 

Facebook Comments

LEAVE A REPLY

Please enter your comment!
Please enter your name here